

3D Analyst #บทความชุดที่ 3

• เรียนรู้การใช้ 3D Analysis

ดัดแปลงและเรียบเรียงจาก หนังสือ Using ArcView 3D Analysis โดย ESRI

แบบฝึกหัดที่ 3 จะเรียนรู้วิธีการสร้าง 3D Shape ขึ้นมาด้วยตนเองโดยสามารถแปลงจาก 2D เป็น 3D ได้ ซึ่งก่อนหน้านี้ได้ศึกษาคุ้นเคยกับการฝึกปฏิบัติในแบบฝึกหัดที่ 1 และ 2 แล้ว

แบบฝึกหัดที่ 3 : การสร้าง Shape file ประเภท 3D

เป็นการสร้างข้อมูล shape file ให้มีระดับความสูง ซึ่งจะต้องศึกษาขั้นตอนพื้นฐานดังต่อไปนี้

<u>ขั้นตอนดำเนินการ</u> ดังนี้

- 1. จากแบบฝึกหัดที่แล้วให้เลือก Project window ให้ Active
- 2. เลือกเมนู File ---> Open Project
- 3. ถ้ามี dialogue box ขึ้นมาถามว่าต้องการบันทึกงานเก่าไหม ให้ตอบ No เพื่อปฏิเสอ
- 4. ให้เลือกเปิดไปที่ C:\ESRI\AV_GIS30\AVTUTOR\3D\ เลือก Project ชื่อ tutor3.apr

File Name: tutor3.apr tutor1.apr tutor3.apr tutor4.apr tutor5a.apr tutor5b.apr	Directories: d:\esri\av_gis30\avtutor\3d d:\ d:\ d:\ d:\ d:\ d:\ d:\ d:		OK Cancel
List Files of Type: Project (*.apr)	Drives:	•	

ถ้าขึ้น Dialog box ใดๆ ให้ตอบ No ก็ได้

*** เราจะพบว่ามีข้อมูล Theme 3 ชุดคือ wells.shp, roads.shp และ dtm_tin ซึ่ง แสดงใน Viewer

*** เราจะเห็น wells.shp, roads.shp จะแสดงอยู่ใต้ dtm_tin เนื่องจากทั้ง 2 theme ยังเป็นข้อมูล 2D ที่ยังไม่มีข้อมูลระดับความสูง

ขั้นต่อไปจะสร้างข้อมูล 3D point โดยอาศัยข้อมูล Attribute ระดับความสูง

ซึ่งใน shape file 2D นั้นเราจะต้องใส่ข้อมูลระดับความสูงไว้ด้วย เช่นในตัวอย่างมี field ความสูงชื่อว่า GL_elev

- 5. ให้เลือกที่ wells.shp ให้ active
- 6. เลือกที่เมนู Theme แล้วเลือกคำสั่ง Convert to 3D shapefile

3-2

7. ให้ตั้งค่ากำหนด Z value โดยเลือกที่ Attribute แล้วกดปุ่ม OK

🍳 Convert Wells.shp	
Get Z values from:	ОК
Attribute	Cancel
Attribute Constant	
	上市

8. จากนั้นเลือก List ที่ชื่อ GL_elev (นั่นเป็น the ground-level elevation of the well) เป็นระดับความสูงที่พื้นดินของบ่อ

Q	🔍 Convert Wells.shp	
	Choose the field that will provide the Z value:	ОК
	Gl_elev 🔺	Cancel
	Mp_elev	
	Tint_depth	
	Bint_depth	
	Tint_elev	
	Bint_elev	
	Station_id	
	Int_width	

9. ใน dialog นั้นจะถามว่าเราจะตั้งค่าชื่อของ output และกำหนดที่เก็บ โดยให้ตั้งชื่อ wellsz1.shp และกดปุ่ม OK แล้ว Output ของ shapefile ใหม่ได้สร้างขึ้น

Q Output Shapefile Name :	Wells.shp		
Shapefile Name [wellsz1.shp	Directories: d:\temp d:\ bitemp	_	OK Cancel
	Drives:	•	

- 10. เมื่อมี dialog ถามว่าต้องการเพิ่มข้อมูล Theme ใหม่หรือไม่ให้ตอบ Yes
- 11. แล้วทำการลบข้อมูล 2D ที่ชื่อ wells.shp ออกจาก view
- 12. แสดงผลข้อมูล wellsz1.shp บน view

*** ผลลัพธ์ที่ได้พบว่าเห็น จุดของบ่อน้ำยากมาก เนื่องจากมันมีระดับความสูงเดียวกันกับ surface ทำให้เราไม่สามารถมองบ่อน้ำเห็นได้พร้อมๆ กันทุกจุดว่าอยู่ที่ใดบ้าง ดังนั้นถ้าเรา ต้องการแสดงผล ในบางกรณีอาจจะต้องเอา DTM_tin ออกไป หรือให้ off เสีย แต่อีกวิธี คือเราอาจจะเอกที่ wellsz1.shp แล้วกำหนดค่า Theme --> 3D Properties แล้ว กำหนดเลือก option ของ offset heights ของความสูง

ขั้นของการแสดง 3D line ซ้อนบนข้อมูลแบบจำลองพื้นผิว (Surface model)

13. ทำให้ roads.shp ให้ active

14. จากนั้นเลือกเมนู Theme --> Convert to 3D shapefile

15. ให้ตั้งค่า Get Z Value ให้เลือกจาก List เป็น Surface แล้วกดปุ่ม OK เพื่อเป็นการ ตั้งค่าความสูงให้เท่ากับ Surface โดยเลือกจาก DTM_TIN

Shapefile Name Troadez1.shp	Directories: d:\temp	OK Cancel	
	Drives:	-	
^{:*} ເ ຣ າກຳกາ ร inter onvert ຈາn 2D ເ	·polate ระดับความ ปั้น 3D	เสูงให้ roads.shp โดย	เอาศัยข้อมูล DTM_TIN โดย
Ele Edit JD Scene Iheme	Surface Graphics Window	Hop CXXX I M CARCENTS	
F 🖌 Roadsztishp 🔺			
✓ W ellsz1.shp ✓ Dtm_tin Elevation R ange 317.257 - 325 305.698 - 317 294,138 - 305 282.579 - 294 271.02 - 282, 259.461 - 271 247.901 - 256 265.265 - 247			

ยกระดับความสูงของ บ่อหรือถนน เล็กน้อย ก็อาจจะพอมองเห็นได้ โดยตั้งค่า offset จากเมนู Theme --> 3D Properties

เราอาจกำหนด 3D graphic ด้วย cursor โดยค่าความสูงสำหรับ graphic ที่อาจจะถูก interpolated จากข้อมูลของ TIN หรือ Grid ที่ active อยู่นั่นเอง มีเครื่องมือสำหรับกำหนด ความสูงในรูปแบบ lines, points, และ polygon เครื่องมือเหล่านี้อาจจะแสดงใน view window และแสดงเมื่อ TIN หรือ Grid ได้ active อยู่เท่านั้น

ขั้นตอนนี้สร้าง 3D shapes ให้มีการโต้ตอบกับผู้ใช้

- 1. ให้ทำ dtm_tin ให้ active
- 2. เลือกเมนู Edit --> Copy Theme

- 3. ปิด 3D scene TOC และ Viewer ออก โดยเลือกเมนู File --> Close
- 4. ให้เปิด View ใหม่ขึ้นมา
- 5. เลือกเมนู Edit --> Paste
- 6. เลือก dtm_tin ให้ active แล้วแสดงผลบน view

 หำ cursor ไปคลิกบน view window โดยให้เลือกไปบน TIN แล้วคลิกให้เป็น polyline โดยคลิกทีละครั้ง เพื่อสร้าง vertice ขึ้นมา และถ้าจะหยุดให้ double click เพื่อปิดเส้น ให้เพิ่มเส้นขึ้นมาหลายๆ เส้น ทั้งแนวดิ่ง และแนวระดับ

- 11. ให้เลือกเมนู Edit -- > Copy Graphic
- 12. แล้วเลือกไปที่ Project window แล้วเลือกที่ 3D scene icon ทำการเลือก 3D scene ที่สร้างไว้ก่อนหน้านี้แล้วกดปุ่ม Open
- 13. เลือกไป 3D scene windows ให้ active เลือกที่เมนู Edit -- > Paste

- 14. แล้วปิดการแสดงผล Dtm_tin ให้ off เพื่อขอดู GRAPHIC ให้ง่ายขึ้น จะเห็นว่า graphic ที่เลือกมานั้นแสดงใน 3D box รอบๆ เส้นนั้น
- 15. เลือกคำสั่ง Edit -- > Delete Graphic เพื่อลบออกไปจาก 3D scene